
1

THERMODYNAMIC ASPECT OF SHORT-TERM FREQUENCY STABILITY OF
DIRECTLY HEATED RESONATORS

IGOR ABRAMZON
Consultant,  P. O. Box 7357 , Omsk  644020,  Russia

ROMAN BORODITSKY
 Valpey-Fisher Corporation, 75 South Street, Hopkinton, MA, 01748 USA

 Abstract.
This paper is an attempt to study a

problem of degradation of short-term
stability (STS) of OCXO based on the
directly heated resonators (DHR) due to
variations in the heating power. The
analytical model linking the DHR frequency
fluctuations with the heating current and
ambient temperature variations, as well as
the DHR properties has been obtained and
verified experimentally. The carried out
research allowed development of the means
for designing DHR with STS better than 5E-
12 per 1 s, which is comparable to the best
results attainable with the conventional
technique of heating the crystal.

1. Introduction.

The directly heated resonator (DHR)
technology provides significant reduction in
warm-up time, size, and power consumption
of OCXO thanks to employing thin film
heater and thermistor directly deposited on
the crystal surface [1]. Frequency stability
of such devices, however, is essentially
dependent on the temperature gradients over
the crystal plate. The gradients are produced
by power dissipated in the film heaters.
Variations in the ambient temperature
and/or supply voltage cause variations in the
power dissipated by the heaters, which in
turn leads to thermal gradients variation.
This effect results in degradation of
temperature and/or supply voltage
frequency sensitivity of the OCXO. Periodic
or random variations of the heating power
caused by changes in external conditions or
noise in thermocontroller circuitry translate
into fluctuations of the DHR frequency
through thermodynamic sensitivity of the

crystal plate. That leads to degradation of
STS and close-to-the-carrier phase noise
performance of the OCXO employing such
resonators.

A goal of the present paper is theoretical
and experimental analyses of the influence
of the thermodynamic effects on STS of the
DHR, which would ultimately lead to the
development of effective means of their
prediction and improvement.

1. Model of the heating power
fluctuations.

To understand an origin of the heating
current fluctuation in the DHR let’s consider
its construction along with the
thermocontroller circuit used to accurately
control the crystal temperature. The
thermocontroller circuit is shown
schematically in Fig. 1. It consists of a
thermo-sensitive bridge, an amplifier and a
regulating transistor governing the current
through the heater resistor deposited on the
crystal plate.  The DHR construction (Fig.2)
contains inside the vacuum holder the
crystal plate with the film heaters and the
thermistor arranged on its surfaces.  The
thermocontroller circuitry can be partly or
entirely located inside the resonator volume
[2]. Effective thermal insulation of the
heated part of the DHR from environment is
used to minimize the heating power
consumption.
For the described circuit the power through
the film heaters in the steady state can be
expressed as:

Ps = Ec*Is*Ka*∆Rt*/4R1, (1)



where Ec - voltage on the thermo-sensitive
bridge; Ka - the amplification coefficient of
the circuit; ∆Rt – the bridge misbalance
providing the  steady  heating  current Is,
R1 – resistance of the bridge resistors.

The power dependence on the
thermocontroller parameters and ambient
temperature deviation can be found as a
derivation of (1):

dPs=Is2h dEc/Ec + Is Ka Ec α dTc(4R1), (2)

where α- temperature coefficient of the
thermistor resistance; dTc – temperature
variation of the thermistor; α dTc=d∆Rt.

As one can see from the expressions
the power variations are dependent on the
thermistor temperature and on the input
voltage changes. The power variations
decrease with reduction of steady state
heating current and of the amplification
coefficient. The input voltage changes are
translated directly into the power
fluctuations. So effective voltage regulator
should be used with the thermo-sensitive
bridge to eliminate influence of the voltage
supplier on the DHR frequency.

Fig.1.

             

The temperature fluctuations in the
thermistor result from environmental
temperature fluctuations. Electrical network
simulating the temperature variations of the
crystal versus the ambient temperature
deviations is shown in Fig. 3.

Fig.3.

In this model r1 – is an electrical equivalent
of the thermal resistance between the holder
and the environment, r2 – is an equivalent
of the thermal resistance between the crystal
and the holder, c1, c2 – are electrical
equivalents of the thermal capacity of the
holder and the crystal plate respectively; U1
– simulates ambient temperature variation
dTa(Ω) with frequency Ω;  U2- simulates
the temperature variation of the crystal
dTc(Ω).
    From the model one can find the crystal
temperature variation dTc(Ω) versus
amplitude and frequency of ambient
temperature dTa(Ω) changes:

dTc(Ω)=dTa(Ω)/√(1+Ω2τ1τ2)2+
Ω2(τ1+τ2+τ12)2

where τ1 = c1∗ r1; τ2 = c2∗r2; τ12 = c1∗r2.
Since τ1, τ2, τ12 >> 1, the expression can be
simplified:

dTc(Ω) ≅ dTa(Ω)/Ω2τ1τ2,    (3)

Hence from expression (3) the
crystal temperature fluctuations decline with
the improvement of the effectiveness of the
thermal insulation and with the increase of
frequency of the temperature variations. For
a DHR packaged in the TO-8 vacuum
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variations at 1 Hz are translated into the
crystal’s  temperature being reduced to 1E-5
of dTa while 0.01 Hz temperature variations
pass into the crystal plate being reduced to
0.1 of dTa..  Improvement of the insulation
leads to proportional reduction of the crystal
temperature fluctuations.

Substitution of expression (3) in (2)
allows determination of the heating power
fluctuations versus ambient temperature
variations, the thermocontroller parameters
and the DHR thermal properties. Next stage
of the work determines frequency changes
induced by the power fluctuations in the
crystal plate.

3.General equation for the crystal
frequency changes induced by a stress
field.

It’s known that temperature
gradients in the crystal plate produce non-
uniform mechanical stress field resulting in
frequency shift via variation of the stiffness
coefficients. Due to non-uniform
distribution of the vibration amplitude over
the plate the resulting frequency deviation
of the crystal is a function of both the fields
interaction. To define the frequency shift of
the crystal under the stress field let’s
consider the energy balance equation of the
plate vibrating in the thickness-shear mode:

Kmax = Pmax,         (4)

Kmax is maximal kinetic energy while the
vibration period:

Kmax = ω ρ ∫ u2 (x,z)sin2(mπy/2h)ds

and the maximal potential energy:

 Pmax=(m2/4h2) ∫q u2 (x,z) cos2(mπy/2h)dv

Here u (x,z) – is a distribution of the
thickness-shear mode displacements over
the crystal plate; ρ - density of quartz, m -
overtone number of the vibrating mode, q –
stiffness coefficient of the vibrating mode

under the stresses; 2h – thickness of the
plate.

Substituting expressions for Kmax,
Pmax in (3) and taking that q = qo + dq(x,z),
and ω= ωo +∆ω (where qo – the stiffness
coefficient of the crystal mode in absence of
the stress field; dq(x,z) – variation of the
crystal stiffness under the stress field σ(x,z),
ωo-  resonance frequency of the crystal in
the absence of the stress field, ∆ω - the
frequency change due to the stress field, we
get the balance equation for the crystal
vibrating under the stress field:

ρ(ωo + ∆ω)2∫ A2(x,z) ds = (m/2h)2 ∫ (qo +
dq(x,z)) A2 (x,z)ds,      (4)

where A(x,z) – normalized  vibrations
amplitude over the plate equaled to:

 A(x,z)=exp(-x2/a2-z2/b2),

where a, b – active area sizes along x and z
axis of the crystal plate.

Since (ωo+∆ω)2 ≈ ωo2 + 2∆ωωo, and
ωo = (πm/2h)2(qo/ρ),   expression (4) can be
written as:

ρ(ωo2+2∆ωωo)∫A2(x,z)ds = (πm/2h)2∫
dq(x,z)A2(x,z)ds + ωo∫A2(x,z)ds

Solving the equation for the
frequency shift ∆ω, we obtain:

∆ω =(π m/2hωo)2 ∫ dq(x,z) A2(x,z) ds / (2ρ ∫
A2(x,z) ds

Dividing the equation by ωo we come to the
expression for fractional frequency changes:

∆ω/ωo = ∫ dq(x,z) A2(x,z)ds / (2qo ∫ A2(x,z)
ds)(5)

The crystal plate can be imagined as
a composition of small areas ds with
coordinates x, z being under the uniform
stresses of σ(x,z) value (within ds) which
produce the frequency change ∂ω/ωo due to
the stiffness coefficient variation:



4

∂ω/ωo  = ∂q/2qo = Kσ(x,z) σ(x,z),

where Kσ(x,z) - coefficient equaled to the
frequency change produced by the uniform
stresses of  σ(x, z)  along axis x or z. Then
equation  (5) can be written as:

∆ω/ω = ∫ Kσ(x,z) σ(x,z) A2(x,z) ds /
∫ A2(x,z) ds     (6)

Obtained equation allows calculation
of the crystal frequency changes produced
by arbitrary field of mechanical stresses
σ(x,z) and in fact is similar to Tiersten’s
perturbation integral.

In case of the circular crystal plate
under the symmetrical (about the plate
center) stresses field equation (6) can be
written as

∆ω/ω = Kσ ∫ σ(r) A2(r) dr / ∫A2(r) dr,   (7)

where Kσ – integral frequency-stress
coefficient dependent on the crystal cut
only. For the case of non-uniformly heated
plate the thermal stress field σ(r) is a linear
function Ψ of the thermal gradient field
∂T/∂r. Thus, equation (6) can be written as:

∆ω/ω = ∫ Kσ(x,z) Ψ(x, z) A2(x, z) ds/
             ∫ A2(x,z) ds                              (8)

For the similar boundary conditions and the
same plate geometry following equation is
valid:

Ψ1(x,z)/Ψ2(x,z)= (∂T1/∂x)/(∂T2/∂x),    (9)

where ∂T1/∂x, ∂T2/∂x – thermal gradients
produced by some temperature fields T1(x)
and T2(x).

4. Calculation of the thermal gradients in
the plate and their influence on the
crystal frequency.

Typical designs of the DHR crystal
plate are shown in fig. 4. The crystal plates

can be circular or rectangular with the film
heaters deposited on the peripheral. In the
rectangular plates the thermal power flows
from the heaters into the central part of the
plate along one axis only. So, a one-
dimension model can be used for definition
of the thermal gradient pattern. The thermal
gradient in the circular plate with sufficient
accuracy can be estimated as a superposition
of two one-dimension solutions in the
square plate with thermal flows along x and
z axes (fig. 4 c).

Fig.4.

At ambient temperature noise the power
variation in the heater is a sum of periodical
functions:

∆P=∑ ∆Poi cos (Ωi t),

where ∆Poi, Ωi–amplitude and frequency of
i-component of the power variations.
    For one-dimensional model the
temperature field is described by the
differential equations:

∂T/∂x = R ∆P,
-∂∆P/∂x = jΩCT (10)

at the boundary conditions:

∆P = ½ ∆Poi cos(Ωi t)  at  x = l,
∆P = - ½ ∆Poi cos(Ωi t)  at  x = - l, (11)

where T, ∆P – complex temperature and the
power variations respectively; R – thermal
resistance of the plate equaled to 1/(hlλx)
(λx-thermal conductivity of quartz crystal
along x-axis); C = coρhl (co - thermal
capacity of the plate).
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Solution of system (10), (11) about
the temperature gradient (∂T/∂x) can be
written  as:

 ∂T/∂x = R∑∆Poicos(Ωit)|sh(z1)/h(z2)|,  (12)

where
z1 = α(l-x) + jβ(l-x),
z2 = αl + jβl

and
α = β = √Ω coρ/2λ

Calculation of the temperature
gradients over a SC-cut plate with 10 mm
width and 0.55 mm thickness in dependence
on the fluctuation frequency Ω is shown in
Fig. 5. As one can see the temperature
gradients reach maximum at the plate edges
and fall to zero in the plate center. The
gradients decrease with raise of frequency
Ω: for low Ω<0.1 Hz the gradients are
linearly distributed over the plate while for
higher Ω the gradients decrease essentially
in the plate center region.

Fig. 5.

Value of the gradients depends on
the crystal thermal conductivity, so the
overtone rectangular plates with the heaters
deposited along crystallographic X’ axes are
less sensitive to the power variations.
Taking into account dependence of the
crystal temperature fluctuations on the
ambient temperature (see exp. 4) one can
conclude that only very slow temperature
variations (at Ω < 0.01 Hz) can produce
noticeable gradients in the crystal plates.

Functions  Ψ(∂T/∂x) in (8) is the
most difficult for determination as being
dependent on a variety of the DHR
parameters, i.e. the crystal plate cut and
geometry, the heater configuration, as well
as of the manufacturing imperfections. That
makes theoretical definition of the function
hardly practical.

To avoid calculation of Ψ we used
experimental method of determination of
thermodynamic sensitivity of the crystal
plates based on measurement of “overshoot”
of their frequency during warming-up. The
“overshoot” phenomena is well studied at
comparatively slow the heating speeds  -
below than 1°C/s.  We studied fast heating
process at about 10°C/s for SC-cut and
modified SC-cut (ϕ=23°25’; θ=34°) crystals
(Fig. 6).

Fig. 6

As it’s seen form the curves sign and
amplitude of the “overshoot” are different
for these crystals. The “pure” SC-cut crystal
“overshoot” is negative with 4-6 ppm
amplitude while for the modified SC-cut it
has positive sign with maximum of about 3
ppm. Obviously, “zero-overshoot” cut must
be oriented at about 23°00’.

Analysis of the warming-up process
reveals that the “overshoot” is caused by
thermal gradients between the plate center
and its edges (where the thermistor is
located) appeared by the moment when
temperature of the thermistor reaches a
preset value.
    Process of heating the crystal plate at the
start-up is governed by the differential
equation of thermal conductivity:
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∂T2/∂x2  = (ρco/λ) ∂T/∂t                 (13)

at the boundary conditions:

at  x = -l   ∂T/∂x =   (ρco/λ) Po/2,
at  x =  l   ∂T/∂x = - (ρco/λ) Po/2,    (14)

where Po – start power in the heaters.
Solution of equation (13) for time

t>ρcol2/λ (about 2 s for the 3rd overtone 10
MHz crystals) allows determination of the
gradient values resulting in the frequency
“overshoot”:

(∂T/∂x)ov = Po (x/2λhl2)

Then frequency “overshoot” can be found
from (11):

(∆ω/ω)ov = ∫ Kσ(x,z) Ψ(x, z)ov A2(x, z) ds/
                   ∫ A2(x,z) ds                       (15)

On the other hand, frequency
deviation due to heating power fluctuations
can be expressed as:

(∆ω/ω)p =  ∫ Kσ(x,z) Ψ(x, z)p A2(x, z) ds/
                  ∫ A2(x,z) ds,                        (16)

where  Ψ(x, z)p is the function of thermal
gradients (∂T/∂x)p produced by power
fluctuations in the heaters and governed by
equation (12).

Taking into account (9) from
equations (15), (16) one can determine
frequency deviations caused by the heating
power variations:

(∆ω/ω)p = (∆ω/ω)ov ∫ (∂T/∂x)p A2(x,z) ds/
                 ∫ (∂T/∂x)ov A2(x,z) ds         (17)

Substituting expressions for (∂T/∂r)p
and (∂T/∂r)ov in (17) we obtain equation for
frequency fluctuations due to the heating
power variations:

(∆ω/ω)p=(∆ω/ω)ov(∆Ps/Po)∫l N(x)A2(x,z)ds/
                ∫ x A2 (x,z) ds ,                      (18)

where N(x)= |sh (z1)/sh (z2)|.
Function N(x) at small x (near a

center of the plate) can be approximated by
a linear function: N(x)=N(a)(x/a), where a –
is a size of an active area of the plate.
Integrating (17) we obtain simple
expression for the frequency fluctuations
versus the heating power variations:

(∆ω/ω)p= (∆ω/ω)ov (∆ Ps/Po)(l/a)N(a)   (19)

   Substituting equations (2), (3) into (18)
one can calculate the frequency fluctuations
versus ambient temperature variations:

(∆ϖ/ϖ)t = (∆ϖ/ϖ)ov N(a) (l/a) Is Ka Ec α
∆Ta(Ω)/(Ω2 τ1 τ2 4R1 Po)                      (20)

The crystal frequency deviation
dependence on the temperature fluctuations
frequency was calculated (Table 1) for 10
MHz 3d overtone SC-cut DHR with the
following properties: thermal insulation
resistance 500 K/W; frequency “overshoot”
(∆ϖ/ϖ)ov  =  3 ppm; τ1 = 70 s;  Ka = 20; Ec =
8V; α=1KOhms/°C and ∆Ta = 0.1°C).

         Table 1

Temperature
fluctuation
frequency, Ω, Hz

Crystal Frequency
Deviation, ∆f/f

0.01 1E-11
0.1 1E-13
1.0 1E-15

Fig.7

As it follow from the data noticeable
(above 1E-11) DHR frequency deviations
take place only at slow ambient temperature
variations – below 0.01 Hz.   However tests
of OCXOs based on different types of DHR
show noticeable variation of their heating
current (within 0.005 - 0.01 mA)  resulting
in considerable degradation of the STS. The
most likely reason for the current
fluctuations is noise in the thermocontroller
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circuitry components, primarily in the
thermistor.

To calculate dependence of the DHR
frequency on the heating current fluctuation
expression (19) can be transformed by
substituting  ∆Psi = 2Isi Rh dIs and  Po =
Io2Rh :

(∆f/f)i = 2(∆f/f)ov (l/a) N(a) dIs Is/Io2  (21)

Equation (21) allows prediction of
the DHR frequency fluctuations on the basis
of the heating current fluctuation
measurements regardless of its origin. It was
applied for calculation of STS of different
types of DHR. The results are shown in
Table 2 in comparison with experimental
data obtained for the OCXO built using
different types of DHR.

Table 2.
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A 60 30/12 3.0 0.005 20 15
B 3.5 70/5 1.0 0.005 0.6 0.8
C 6.0 200/11 3.0 0.01 0.9 1.0

A. Glass packaged DHR, AT-cut, 5th

overtone, 10 MHz
B. Glass packaged DHR, modified SC-
cut, 3rd overtone, 10 MHz
C. TO-8 packaged RT, modified SC-
cut, 3rd overtone, 10 MHz

As one can see the theoretical results
are close to the experimental data. For the
OCXO based on the AT-cut DHR design
the STS is 20-30 times worse as compared
with that of the SC-cut DHR that results
from significant thermodynamic sensitivity
of the AT-cut crystals and considerable
power dissipated in the heaters.

On the basis of above consideration
following means of reduction in the DHR
frequency fluctuations caused by the
ambient temperature deviations and inherent
noise in the thermocontroller can be
proposed:
1. Reduction of power consumption of the

DHR is the most effective way to
improve STS. It effectively shields the
crystal from transferring the ambient
temperature variations. The result is
proportional reduction in heating current
fluctuation.

2. The translation of the crystal
temperature deviation into the heating
power fluctuations can be reduced by
reduction of the thermocontroller
amplification coefficient, the thermistor
coefficient α and the thermo-sensitive
bridge input voltage Ec. These methods
however are limited by possible
degradation of the DHR temperature
stablity.

2. Thermo-dynamic sensitivity of the
crystal plate should be minimal, which
demands application of SC-cut plates
with optimized configuration of the
heaters. Moreover the 5th overtone
crystals are preferred over the 3d
overtone ones while the later have better
STS in comparison with the
fundamental mode crystals.

3. Low-noise components of the
thermocontroller circuitry should be
used to minimize its inherent noise
resulting in fluctuations of the heating
current.
As concluded above, the most effective

way to improve DHR STS is a reduction of
the heating power by improvement of the
thermal insulation. We’ve developed ultra-
low consumption SC-cut DHR packaged in
TO-8 vacuum holder. Its thermal insulation
resistance is about 1000 W/K which results
in 5 mA steady state current and thermal
power dissipated in the crystal below 1 mW.
The STS of such designs is measured at
about 5E-12 per 1s, the Single Side Band
Phase Noise Power Density at 1 Hz offset is
below –90 dBc/Hz.
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